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A new model for the erosion and deposition of particles, developed in Part 1, is now
applied to oscillating flows to give an analytic expression for the growth rate. We find
that ripples can grow in oscillating flows when they do not in steady flows of the
same magnitude, this being due to a suppression in rapidly oscillating flows of the
erosion by higher shear rates on the crests.

1. Introduction
It is well-known that an oscillating flow over a sandy bottom, such as that

induced by a surface wave in shallow water, creates sand ripples (Bagnold 1946). The
commonly accepted explanation is that these ripples result from an instability of the
fluid flow: over an initial spatially periodic bed disturbance, there exists an inertially
induced mean fluid flow, or steady streaming, which is directed from troughs to crests
(Sleath 1976; Kaneko & Honji 1979). This steady streaming drags the particles towards
crests, thus amplifying the initial bed disturbance. All wavenumbers are unstable, but
the component of gravity parallel to the wavy bed stabilizes the smallest and highest
ones, resulting in a finite-wavenumber instability (Blondeaux 1990). However, there
is no clear experimental evidence that this mechanism is the dominant one: a crucial
test for stability theories is the measurement of growth rates, but such measurements
are lacking. Moreover, the facts that the shape seems far from sinusoidal (Stegner &
Wesfreid 1999) and that coalescence occurs at the early stages of growth (Faraci &
Foti 2001) indicate that linear stability theories might be of little use. A quite different
approach has been developed by Andersen (2001), who considers the ripples as small
packets of particles distributed over the bed, interacting through the wakes. This
approach is able to reproduce ripple coalescence, with the predicted wavelength in
reasonable agreement with experiments. Although promising, this approach appears
rather phenomenological however, and uses questionable assumptions, such as that
of solid friction between the particles and the bed.

Keeping to the linear stability analysis followed by Blondeaux (1990), much progress
can be made by improving the way the dynamics of the particles is considered. Up
to now, this dynamics has been modelled with a semi-empirical algebraic law for the
particle flux as a function of the bottom shear stress, as in studies of ripple formation
under steady flows (Richards 1980; Sumer & Bakioglu 1984). The aim of this paper
is to reconsider the problem using a deeper insight in the particle dynamics, using
an erosion–deposition model for a monolayer of particles rolling and sliding over the
fixed bed. This model, first introduced in Charru, Mouilleron-Arnould & Eiff (2004)
from experiments in an annular Couette device, was used in Part 1 of this paper
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Figure 1. Sketch of the fluid layer over a sinusoidal bed, and the base oscillating flow.

(Charru & Hinch 2006) for studying ripple formation in steady flows. It was shown
there that, unlike the classical approach, the erosion–deposition model accounts for
the observation that increasing the fluid viscosity leads to the disappearance of ripples
(Mouilleron 2002). However, these experiments also show that ripples can exist in an
oscillating flow when they do not exist in a steady flow. The aim of this paper is to
show that the same erosion–deposition also accounts for the latter observation. In
addition, we also intend to show that the hydrodynamic instability mechanism is the
same for steady flow and oscillating flow.

The paper is organized as follows. The oscillating viscous fluid flow over a sinusoidal
bed is calculated analytically in § 2. A simple model of the particle dynamics on a fixed
sinusoidal bottom is discussed in § 3, aiming at understanding the difference between
steady and oscillating flows. Then the erosion model is presented in § 4. Ripple
formation is discussed in § 5, allowing the growth rate to be calculated analytically
for long waves. A brief summary is given in § 6.

2. Fluid flow
We consider a fluid layer with density ρ, viscosity µ and thickness h, lying between

an erodible bed and a moving upper wall with velocity Uw sin ωt (figure 1). The
erodible bed is assumed to be perturbed sinusoidally as η = η0 cos kx, with wave-
number k and amplitude η0. Following previous studies, and in agreement with
observations, we assume that the time scale of the fluid flow is much shorter than the
time scale of the bed evolution. Thus the fluid flow can be calculated as if the wavy
bottom were fixed, by considering the flow as the superposition of a base flow u over
a flat bed, and a disturbance (u, v) induced by the wavy bottom.

When the period of flow oscillation, 2π/ω, is small compared with the time for
momentum to diffuse over the thickness of the fluid layer, ρh2/µ, the base flow departs
only slightly from a linear shear flow with time-varying shear rate (Uw/h) cos ωt . The
base flow can be found as a power series in the unsteadiness parameter

εu =
1

30

ρωh2

µ
, (2.1)

where the numerical factor is introduced for future convenience. At O(ε2
u), the base

flow is found to be, with Y = y/h,

u = Uw(Y sin ωt − 5εuY (1 − Y )(1 + Y ) cos ωt

− 5
2
ε2
uY (1 − Y )(1 + Y )(3Y 2 − 7) sin ωt). (2.2)



Ripple formation. Part 2. Oscillating flow 125

The first term is the quasi-static approximation, and the second and third the dominant
inertial corrections. Within this low-frequency approximation, the corresponding shear
rate on the bottom is

γ = Γa sin(ωt − ϕ), with Γa =
(
1 − 10ε2

u

)Uw

h
, ϕ = 5εu. (2.3)

As expected, fluid inertia reduces the amplitude Γa , by a factor (1−10ε2
u), and induces

a phase lag, ϕ.
For a wavy bed with wavelength 2π/k much longer than the fluid thickness, kh � 1,

and small fluid inertia, the longitudinal velocity disturbance can be found as the sum
of three contributions:

u = ε0Uw(u0 + εiui + εuuu). (2.4)

The first term on the right of (2.4) is the dominant Stokes correction, the second the
inertial correction arising from advection effects, and the third the inertial correction
due to the base-flow unsteadiness. The small parameters ε0 and εi measure bottom
waviness and advection effects, respectively, and are defined as

ε0 =
4η0

h
, εi =

kh Re

120
with Re =

ρUwh

µ
. (2.5)

Expanding the transverse velocity and pressure disturbances similarly, and solving
the governing equations with the no-slip conditions at the upper and lower boundaries,
one obtains the longitudinal velocity disturbances

u0 = − 1
4
(Y − 1)(3Y − 1) sin ωt cos kx, (2.6)

ui = −Y (Y − 1)2(−3Y 2 − Y + 1) sin2 ωt sin kx, (2.7)

uu = − 1
8
(Y − 1)(15Y 3 − 25Y 2 − 22Y + 10) cos ωt cos kx. (2.8)

The generation of the steady streaming can be understood as follows, with the help
of figure 2. When the base flow is from left to right (sin ωt > 0, figure 2a), the leading-
order longitudinal velocity, u0, is in phase with the bottom. Advection by the base
flow of the associated vorticity creates the out-of-phase velocity ui , as shown in the
figure (for more details see Part 1). Note that uu does not contribute to ui , because
it is only a small correction to u0 (it is not represented in figure 2a); however, it
will be seen in the next section that uu strongly affects particle motion. When the
base flow is from right to left (sin ωt < 0), the in-phase flow u0 reverses, as shown
in figure 2(b). However, the out-of-phase inertially induced flow ui is not reversed,
since it results from both the leading-order correction flow and advection by the base
flow, which both change sign. Averaging over one cycle of the oscillation, the net
base flow is zero, the net in-phase disturbance flow is zero too, but the net inertially
induced out-of-phase flow, or steady streaming, is non-zero, as shown in figure 2(c).
An experimental illustration of such a steady streaming induced by an oscillating
flow over a wavy boundary is given by Kaneko & Honji (1979).

From now on, the main flow quantity of interest is the bottom shear rate, which
is the sum of the base shear rate γ given by (2.3) and the shear-rate disturbance γ

corresponding to the flow disturbance given by (2.4)–(2.8). Shifting the time origin to
absorb the bottom phase lag ϕ, and introducing the amplitude Γa , the bottom shear
rate finally is

γ + γ = Γa sin ωt + ε0Γa(sin ωt cos kx − εi sin
2 ωt sin kx − εu cos ωt cos kx) (2.9)
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Figure 2. (a) In-phase and inertially induced out-of-phase flow, when the base flow is from
left to right (sinωt > 0); (b) same as (a) but when the base flow is from right to left (sin ωt < 0);
(c) net flow averaged over one period (steady streaming).

The four terms on the right-hand side correspond to the base flow, the dominant
Stokes correction due to the bottom waviness, and the inertial corrections due to
advection and unsteadiness, respectively.

3. A simple model
In this section we study a simple model for the particle motion, which, ignoring any

bed erosion or deposition, assumes a constant number of moving particles. The aim of
this study is to throw light on an important difference between steady and oscillating
flows, and to understand the effects of fluid inertia and oscillation frequency. We
consider particles with diameter d , deposited on a wavy fixed bottom (figure 3). We
want to know how a uniform initial distribution evolves with time under steady or
oscillating flow. Particles are assumed to have no inertia so that their velocity U is
proportional to the bottom shear stress µ(γ + γ ). The order of magnitude of U is
expected to be the typical fluid velocity (γ + γ )d at a height d above the bottom,
where the bottom shear rate γ + γ is given by (2.9). Thus U can written as

U = α(γ + γ )d, (3.1)
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Figure 3. Sketch of particles initially deposited on a wavy bottom.

where α is a dimensionless coefficient of order one. This coefficient can be obtained
from calculations of the lubrication flow around a smooth particle translating and
rotating in a linear shear flow close to a flat wall (Goldman, Cox & Brenner 1967).
For particles rolling without slip, with surface roughness δr = 0.01d , this coefficient is
found to be α =0.23, in agreement with experiments for small shear stress (King &
Leighton 1997).

The position x(t) of a particle starting from x(0) = x0 can be obtained from
numerical integration of the trajectory equation

dx

dt
= U (x, t), (3.2)

where the velocity is given by (3.1). Taking as the length scale the inverse wavenumber
k−1, and as the time scale the time needed for a particle with velocity αγ d to travel
distance k−1, we define the dimensionless space and time as

X = kx, T = αkdΓat. (3.3)

Note that usually, for sand ripples under water for example, the amplitude of
the particle motion during one cycle is small compared to the wavelength. This
corresponds to high dimensionless frequency,

Ω =
ω

αΓakd
� 1. (3.4)

With these scales, the particle motion equations (2.9)–(3.2) become

dX

dT
= sin ΩT + ε0(sin ΩT cos X − εi sin

2 ΩT sin X − εu cosΩT cos X). (3.5)

The rest of this section is devoted to the numerical investigation of (3.5), which
depends on the four parameters Ω, ε0, εi and εu.

Figure 4 displays the evolution x(t) of a few particles initially equally spaced on
the bottom, for the case of steady flow (which can be obtained from (3.5) by setting
sin ΩT = 1 and εu = 0). Figure 4(a) corresponds to when inertia is ignored (εi = 0),
whereas figure 4(b) corresponds to non-zero inertia (εi = 1). In both cases, it can be
seen that, as expected, particles tend to gather where the velocity gradient is negative
(i.e. down the slopes for small εi), and they tend to separate where the velocity
gradient is positive. However there is no net accumulation near crests or troughs,
irrespective of fluid inertia.
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Figure 4. Spatio-temporal diagram of the motion of particles initially equally spaced in a
steady shear flow over a wavy wall, for ε0 = 0.2. (a) εi = 0 (no fluid inertia); (b) εi =1. The
upper sinusoidal trace represents the bed.

Figure 5 displays particle trajectories, as in figure 4, for the case of an oscillating
flow with Ω = 1. Figure 5(a) shows that when both the advection and unsteadiness
are ignored (εi = 0, εu =0), particles oscillate, but no accumulation is observed, as for
the steady flow. Figure 5(b) shows that when advection only is taken into account
(εi = 1, εu = 0), particles tend to gather upon the crests. Finally, figure 5(c) shows that
when unsteadiness only is taken into account (εi = 0, εu = 1), particles tend to gather
in the troughs. Therefore, it appears that advection and unsteadiness both induce
particle drift, but in opposite directions. The net effect depends on the oscillation
frequency.

The effect of the oscillation frequency is shown in figure 6, with both inertial
effects taken into account (εi = εu = 1). For Ω = 1 (figure 6a), it appears that the net
particle drift is zero: the two inertia effects compensate, as might be guessed from
figure 5(b, c). However, for the higher frequency Ω = 5 (figure 6b), particles clearly
accumulate on the crests. This phenomenon is enhanced at higher frequencies. Thus,
in the high-frequency (or long-wave) limit, Ω � 1, which, as noted above, corresponds
to the usual physical case, the effect on particle motion of the base-flow unsteadiness
is negligible, and advection dominates.

The accumulation of the particles on crests in the high-frequency (or long-wave)
limit can be better understood from an approximate analytical solution of (3.5).
Assuming 1/Ω ∼ ε0 ∼ εi ∼ εu � 1, one obtains, for the position x of a particle

kx ∼ kx0 +
αΓakd

ω
(1 − cos ωt) − 1

2
ε0εikdαΓat sin kx0. (3.6)

This equation predicts that (i) the mean position of the particle drifts linearly with
time towards the nearest crest, in agreement with the numerical solution displayed
in figure 6(b), and (ii) the drift velocity, − 1

2
ε0εiαΓad sin kx0, does not depend on

frequency.
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Figure 5. Spatio-temporal diagram of the motion of particles initially equally spaced in an
oscillating shear flow for Ω = 1 and ε0 = 0.2. (a) εi = 0, εu = 0 (no inertia); (b) εi = 1, εu = 0
(advection only); (c) εi = 0, εu = 1 (unsteadiness only).

From the above equation, the number n(x, t) of particles per unit length can be
determined. The particles in the small length dx at time t were in the length dx0

initially, i.e. n dx = n0 dx0, where n0 = n(x, 0) is the initial uniform particle density.
Differentiating equation (3.6) and inserting the result into the above Lagrangian
conservation equation gives

n

n0

∼ 1 + 1
2
ε0εikdαΓat cos kx. (3.7)

As expected, this equation predicts that, at a fixed location, the number of particles
per unit length decreases linearly in the troughs, and increases linearly at the crests.
This behaviour is clearly due to the steady-streaming flow shown in figure 2(c).

The conclusion of this analysis reveals an important difference between steady
and oscillating flows: in steady flows, the particle density is slightly higher on the
lee side of the bed undulation, but it does not vary with time, and the travelling
particles successively cross regions of lower and higher density. In oscillating flow, the
particle density changes with time, and particles may drift towards troughs or crests,
depending on the relative importance of unsteadiness and advection. However, when
the amplitude of the particle motion is small compared to the wavelength (Ω > 1), the
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Figure 6. Spatio-temporal diagram of the motion of particles initially equally spaced in an
oscillating shear flow, for ε0 = 0.2 and εi = εu = 1. (a) Ω = 1; (b) Ω = 5.
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Figure 7. Sketch of the erosion and deposition phenomenon.

unsteadiness effect is negligible, the steady-streaming effect dominates, and particles
gather on crests. We now turn to the effect of erosion and deposition.

4. An erosion–deposition model
The erosion–deposition model to be presented in this section is essentially the same

than that used in Part 1. Thus we just briefly give its main features, emphasizing slight
differences. We consider a bed of particles with diameter d and density ρp , sheared by
a fluid flow with local bottom shear rate γ + γ (figure 7). The condition for particles
to be set into motion is that the bottom shear stress µ(γ + γ ) exceeds a threshold
µγt0 (the dependence of this threshold on the local slope will be considered in § 5.3).
This corresponds to Shields number µ(γ + γ )/((ρp − ρ)g)d higher than a threshold
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θt0, or to normalized Shields number,

Θ =
1

θt0

µ(γ + γ )

(ρp − ρ)gd
, (4.1)

higher than 1. With the shear rate (γ + γ ) defined by (2.9), this normalized Shields
number becomes

Θ = Θa sin ωt + ε0Θa(sin ωt cos kx − εi sin
2 ωt sin kx − εu cos ωt cos kx), (4.2)

where the amplitude Θa involves the amplitude Γa of the the shear-rate oscillation

Θa =
1

θt0

µΓa

(ρp − ρ)gd
. (4.3)

The conservation equation for the number of moving particles per unit bed area,
or particle density n, can be written as

∂n

∂t
= −ṅd + ṅe − ∂q

∂x
, (4.4)

where the variation rate of n is the sum of three terms: the deposition rate ṅd , the
erosion rate ṅe, and the divergence of the particle flux q .

The deposition rate ṅd is modelled as the ratio of the particle density n to a typical
duration of saltation flights τ :

ṅd =
n

τ
with τ =

d

cdVS

, VS =
(ρp − ρ)gd2

18µ
, (4.5)

where VS is the Stokes settling velocity and cd is a coefficient.
The erosion rate is considered as proportional to (γ + γ − γt )/d

2 where γt is the
threshold shear rate for particle motion, i.e. proportional to the excess shear rate.
Introducing the saltation time τ , the erosion rate can be written as

ṅe =
ce

τd2
(|Θ | − 1)+, (4.6)

where ce is a coefficient and the subscript + means that (|Θ | − 1) has to be set to zero
when negative (i.e. no erosion below the threshold).

The particle flux q is the product of the particle density n and the mean particle
velocity U , which is assumed to be proportional to the fluid velocity (γ + γ )d at a
distance d above the bed surface. Then the particle flux can be written as

q =
cu

τd
Θ(nd2). (4.7)

where cu is a coefficient.
Choosing the particle diameter d and the jump time τ as the unit length and

time, respectively, we define the dimensionless space X and time T , the dimensionless
wavenumber K and frequency Ω , and the dimensionless particle density N and
particle flux Q, as

X =
x

d
, T =

t

τ
, K = kd, Ω = ωτ, N = nd2, Q = qτd. (4.8)

Note that this non-dimensionalization differs from that used in § 3. The conservation
equation (4.4) now becomes

∂N

∂T
= −N + ce(|Θ | − 1)+

∂Q

∂X
, with Q = cuΘN, (4.9)

where Θ is given by (4.2).
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Figure 8. Time evolution of the density of moving particles on a flat bed, starting from
rest, for ce = 0.055, Ω = 10 and Θa = 2. Solid line: numerical solution of (4.9); dashed line:
approximate solution with mean value (5.1) and oscillatory correction given by (5.9).

The erosion and deposition models (4.6) and (4.5), as well as the flux law (4.7)
were derived from experiments reported in Charru et al. (2004). These steady flow
experiments allowed the determination of the coefficients ce, cd and cu, which are
assumed to remain the same for oscillating flow:

θt = 0.12, ce = 0.055, cd = 0.067, cu = 3.3. (4.10)

In the oscillating experiments of Mouilleron (2002), the frequency of the oscillations
was in the range 0.1–1 Hz, and the wavelength of the observed ripples in the
range 5–10 cm. This corresponds to a dimensionless wavenumber K =0.03–0.07 and
dimensionless frequency Ω = 2.5–25. Therefore the following analysis only considers
the case of long waves, K � 1, and high frequency, Ω � 1.

5. Ripple formation
5.1. Density of mobile particles at high frequency

First consider the case of a flat bed. The density N of mobile particles results from
a local balance between erosion and deposition, and is approximately constant at
high frequency. This is illustrated in figure 8, which displays the time evolution of
N , starting from rest, obtained by numerical integration of (4.9) with ε0 = 0. After
a short transient, N oscillates with frequency 2Ω about its mean value. This mean
value can be obtained by time averaging (4.9), giving

N ∼ ceA, (5.1)

where A is the mean value of the driving shear stress:

A = (|Θ | − 1)+
t
=

2

π

(√
Θ2

a − 1 − cos−1 1

Θa

)
. (5.2)

Figure 8 also shows an approximate solution including the leading-order oscillatory
correction, of order 1/Ω , which will be given later, see equation (5.9). On a wavy
bed, a correction of order ε0 should be added, see equation (5.10), corresponding to
the fact that the shear stress, and thus N , is slightly higher on the crests than in the
troughs.
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5.2. Effect of the steady streaming

The particle flux associated with the density of mobile particles calculated above in
(5.1) is Q = cuNΘ , with Θ given by (4.2). Averaging over time, the mean flux is found
to be

Q
t ∼ cuNΘ

t ∼ −ε0εi

cuce

2
AΘa sin KX. (5.3)

Note that the O(1/Ω) oscillatory correction to N , as well as the corrections due to the
wavy bed, lead to higher-order corrections to the above mean flux. This flux, directed
up to the crests, arises from the contribution of advection to the shear stress, which is
the only one with non-zero mean, i.e. it is driven by the steady-streaming flow shown
in figure 2. This flux is responsible for the growth of the disturbance.

5.3. Effect of gravity

On a wavy bed, gravity pulls the particles towards troughs, with a force parallel to the
bed equal to (ρp −ρ)g∂xη per unit volume. This force has two effects, both stabilising:
it modifies the threshold Shields number for particle motion, and it induces a falling
velocity of mobile particles from crests to troughs. These two effects give separate
contributions to the growth rate. However, since these contributions are qualitatively
the same, as shown in Part 1, and considering the uncertainty involved the numerical
coefficients, here we only take into account the falling-velocity effect for the sake of
simplicity. This falling velocity along the bed surface is expected to be proportional to
−VS∂xη, and can be written as Ug =(d/τ )cgε0 kh sin kx, where cg is a coefficient. The
corresponding particle flux is qg = Ugn, or, in dimensionless form, Qg = (Ugτ/d)N ,
where the particle density N is given by (5.1). The time-averaged dimensionless flux
due to gravity finally is

Qg

t
= ε0khcgceA sin KX. (5.4)

As expected this flux drives the particles from the crests down to the troughs.

5.4. Erosion of the peaks

The above analysis includes two major phenomena: the steady streaming due to fluid
inertia, which is destabilising, and the gravity flux, which is stabilising. However,
another effect may be important, to which this section is devoted. The study of
steady flow in Part 1 revealed that higher erosion on the crests due to higher shear
stress, and transport by the base flow of the particles eroded there, lead to particle
deposition in troughs; this stabilising phenomenon can overcome the destabilising
effect of fluid inertia, so that the flat bed may be stable for any Shields number.
This phenomenon also exists in oscillating flow: while oscillating on a wavy bed, the
particles explore regions of higher and lower shear stress, at the upper and lower part
of their trajectory, respectively. Thus, some of the particles which were mobile at their
upper position, closer to the crest, are deposited as they reach their lower position,
closer to the trough. The above effect results in a net migration of the particles
from crests to troughs. The aim of this section is to analyse more precisely this
phenomenon, which, although it is physically obvious, its calculation is less obvious.
For the sake of simplicity, we ignore inertia effects, which are not essential here, and
set εi = εu = 0.

The method consists of solving (4.9) by a long-wave expansion of the density N

and the flux Q,

N = N + ε0

(
N (0) + KN (1) + K2N (2) + · · ·

)
, (5.5)

Q = Q + ε0

(
Q(0) + KQ(1) + K2Q(2) + · · ·

)
. (5.6)
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The forcing term (|Θ | − 1)+ in (4.9) will be approximated by a Fourier expansion
retaining the mean term and the dominant harmonic with frequency 2Ω:

(|Θ | − 1)+ ∼ A + ε0A
′ cos KX +

B + ε0B
′ cos KX

2Ω
cos 2ΩT, (5.7)

where A =
2

π

(√
Θ2

a − 1 − cos−1 1

Θa

)
,

A′ = Θa

dA

dΘa

=
2

π

√
Θ2

a − 1,

B = −4Θa

3π

(
1 − 1

Θ2
a

)3/2

,

B ′ = Θa

dB

dΘa

= − 4

3π

√
Θ2

a − 1
Θ2

a + 2

Θ2
a

.

The base-flow particle density N is governed by

∂N

∂T
= −N + ce

(
A +

B

2Ω
cos 2ΩT

)
, (5.8)

with the following solution for high frequency:

N ∼ ce

(
A +

B

2Ω
sin 2ΩT +

B

(2Ω)2
cos 2ΩT

)
. (5.9)

This is the expression plotted in figure 8, where it appears that it is a good
approximation of the exact numerical solution. This would not be the case for
shear-stress amplitude very close to threshold, i.e. Θa − 1 � 1, where the duration
of the particle motion is a small fraction of the oscillation period, so that higher
harmonics cannot be neglected.

At O(ε0K
0), the equation to be solved is similar to (5.8), with A′ cos KX and

B ′ cos KX instead of A and B , with solution

N (0) ∼ ce

(
A′ +

B ′

2Ω
sin 2ΩT +

B ′

(2Ω)2
cos 2ΩT

)
cos KX. (5.10)

Note that the oscillating part has to be retained in the present analysis up to the second
order. Indeed, for infinite frequency, the amplitude of the oscillations of the particles
is zero, and the peaks cannot be eroded by the mechanism sketched at the beginning
of this section. Moreover, the following analysis shows that the O(1/Ω)-correction
is not sufficient, and that the O(1/Ω2)-terms have to be retained. The particle flux
associated with N (0) is Q(0) = cu N (0)Θ , with zero mean value Q(0)

t
, so that the higher

order has to be calculated. Incidentally, note that if the inertial terms were retained
in the present K-expansion, the mean flux (5.3) calculated before would be recovered
at this O(ε0K

0), with a finite-frequency correction of order ε0εi/Ω
2.

At the following O(ε0K
1), the correction N (1) of the density of mobile particles

is found as the sum of three terms, involving sin ΩT , cosΩT and sin 3ΩT , with
the same spatial dependence in sin KX. A non-zero mean flux Q(1)

t
arises from the

sin ΩT term, equal to

Q(1)
t
= cuN (1)Θ

t

=
cec

2
uΘ

2
a

2Ω2

(
A + A′ + 1

4
(B + B ′)

)
sin KX. (5.11)
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As expected from the physical analysis at the beginning of this section, the above
crest-erosion flux drives the particles from the crests down to the troughs, and is
stabilising. However, it appears that its order of magnitude is ε0/Ω

2, which has to
be compared with that of the steady-streaming flux (5.3), which is ε0εi . Thus, for
high frequency, such that Ω > 1/εi , crest erosion is smaller than steady streaming by
one order of magnitude, so that it is negligible. It is also negligible compared to the
gravity effect, by a factor 1/(Ω2kh).

5.5. Growth rate

The mean net erosion–deposition rate can be obtained by averaging (4.9) over time,
giving

τd2(ṅd − ṅe)
t
= −∂Q

∂X

t

− ∂Qg

∂X

t

, (5.12)

where Q is the steady-streaming flux given by (5.3), and Qg is the gravity contribution
(5.4). The crest-erosion contribution (5.11) has been omitted since it is negligible at
high frequencies. This net erosion–deposition rate is related to the time variation of
the bed surface by

∂η

∂t
=

πd3

6φ
(ṅd − ṅe)

t
, (5.13)

where φ is the volume fraction of the particles on the bed. Then the growth rate is
found to be

σ =
1

τ

2π

3φ
ceA(kd)2

(
cu

Gaθt0

240

h2

d2
Θ2

a − cg

)
. (5.14)

In the above equation, A is the mean value of the effective Shields number (|Θ |−1)+,
given by (5.2), and the Galileo number is defined as

Ga =
ρp − ρ

ρ

ρ2gd3

µ2
, (5.15)

which does not depend on the shear rate. Note that there is no wave drift here, since
the steady streaming has no uniform component, as it is the case for oscillating flow
created by a travelling surface wave (Faraci & Foti 2001).

Thus, there exists a threshold Shields-number amplitude Θac above which the
stabilizing effect of gravity is overcome by the steady-streaming effect, so that long
waves are unstable, with growth rate scaling as the square of the wavenumber. For
high Galileo number (typically large particle diameter or small viscosity), Θac is lower
than 1, so that the bed is unstable as soon as particles move. For small Galileo
number, Θac is higher than 1, so that there exists a Shields-number range in which
particles move over a stable flat bed.

6. Summary and discussion
As explained in the introduction, the ripple formation models used up to now for

oscillatory flows, such that of Blondeaux (1990), are based on a decoupling of the
time scales for the fluid flow and the bed evolution: the fluid flow is calculated as if
the wavy bed were fixed, and the bed evolution is then calculated from an algebraic
power law for the particle flux as a function of the bottom shear rate. The main
weakness of this approach is the approximate way in which the particle dynamics
is treated. In particular, this approach cannot account for the observation that a



136 F. Charru and E. J. Hinch

higher shear stress on the crests implies more erosion and the flattening of the bed.
In the present study, we have proposed a more elaborate description of the particle
dynamics, based on an erosion–deposition model. In particular, this model accounts
for the crest-erosion phenomenon.

The erosion–deposition model, together with asymptotic expressions for the fluid
flow, allows an analytic derivation of the net deposition rate and growth rate, when
the oscillation period is short compared to the duration of particle flights over the
bed, i.e. for high dimensionless frequency Ω . This limit also corresponds to small
amplitude of the particle motion compared to the wavelength. Within this limit, it
appears that the dominant contributions to the growth rate are the destabilizing effect
of the steady streaming and the stabilising effect of gravity. The contribution of crest
erosion is smaller by one order of magnitude when 1/Ω and the small parameter εi ,
which is an effective Reynolds number, are of the same order of magnitude. The net
effect of the steady streaming and gravity is that the bed is unstable above a critical
Shields number Θa given by (5.14) with σ =0. For high Galileo number, Θa is lower
than the threshold for particle motion, so that the bed is unstable as soon as particles
are set into motion. For small Galileo number, a range of stable Shields number
exists beyond the threshold.

The above results imply that for a bed of particles sheared by an oscillating
viscous flow, there always exists a critical Shields number above which the flat bed is
unstable. This result contrasts with that for steady flow in Part 1, according to which
for small Galileo number (typically small particle diameter or high viscosity), the
crest-erosion phenomenon dominates advection, so that the bed is stable whatever
the Shields number. These predictions for steady and oscillating flow both agree with
experiments by Mouilleron (2002). In these experiments, in an annular Couette-flow
device described in Charru et al. (2004), ripples were not observed in a steady flow for
a viscosity higher than 26 × 10−3 Pa s, corresponding to Ga < 1.1, whereas they were
still observed to grow in oscillating flow, at least for a viscosity up to 100 × 10−3 Pa s
which was the highest tested viscosity.

Finally, the present analysis, which is valid for waves longer than the fluid depth,
cannot predict any wavenumber selection. Indeed the predicted growth rate (5.14)
scales as the square of the wavenumber, as for the steady flow case. However, this
analysis could be easily extended to short waves, within the framework of the same
erosion–deposition equation (4.9), by using the short-wave flow parameters ε0 and εi

given in Part 1. Again, one might expect the maximum growth rate to occur around
kh = O(1).
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